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Abstract 

The Landau theory of second-order phase transitions 
imposes a precise symmetry requirement on the phase 
at lower temperature. It is shown how this affects the 
assignment of superspace groups for incommensurate 
phases reached by one second-order transition from 
a disordered state. It is noted that the symmetry 
requirement appears to have been overlooked in 
several cases when superspace groups were assigned 
by other authors. For those materials, namely 
NaNO2, biphenyl and Rb2ZnBr4(CI4), the correct 
choice of superspace group is discussed. 

1. Introduction 

It has been shown by a group of authors that the 
symmetry of incommensurate (IC) materials may be 
specified by a four-dimensional superspace group (de 
Wolff, 1974; de Wolff, Janssen & Janner, 1981). The 
fourth dimension comes from the phase (~) of the 
modulation along the wave: since ~-+ ~" + 2zr is clearly 
a symmetry, including z as a dimension along with 
the three spatial ones leads to a 4D space group. As 
has been discussed by the aforementioned authors, 
the superspace groups provide a straightforward 
interpretation of diffraction data. However, in order 
to use them to analyse accurately the structure of a 
particular IC material, one needs to know how to 
determine which of the many 4D superspace groups 
describes that material's symmetry properties. This is 
a point which has not been dealt with very systemati- 
cally in the literature. On the one hand, some authors 
like Janner & Janssen (1980) have just postulated or 
stated part of the answer and derived the remainder 
from that beginning. On the other, a number of 
experimentalists (Baudour & Sanquer, 1983; Paciorek 
& Kucharczyk, 1984) have sought to determine the 
superspace group from the observation of extinctions 
and symmetry in intensities among the satellite reflec- 
tions. Neither approach has been entirely satisfactory. 

The main point of this paper is that the Landau 
theory of second-order (and nearly second-order) 
phase transitions also imposes a symmetry require- 
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ment on the IC phase, a requirement which seems 
never to have been mentioned explicitly in previous 
discussions of the superspace groups. Accordingly, 
some superspace groups which have been suggested 
for certain materials directly violate this law of phys- 
ics, in particular: NaNO2 (Paciorek & Kucharczyk, 
1984), biphenyl (Baudour & Sanquer, 1983) and 
RbZnBr4(C14) (Janner, Rasing, Bennema & van den 
Linden, 1980). We shall argue below that this sym- 
metry requirement, which we call the Landau sym- 
metry theorem, reduces to a simple and useful rule 
of thumb. This is that the 3D space group G+q (the 
'basic group') appearing in the upper part of the 
superspace-group symbol consists of all elements of 
the full space group G of the disordered phase which 
turn the modulation wave vector q either to +q or 
-q.  That the rule is simple to apply may be seen by 
example: if the disordered phase has space group 
G = 4/mmm and q does not point along the 4 axis, 
then G+q is mmm; the elements 4 and 43 cannot, by 
definition, belong to G±q. That it is useful may be 
seen from the fact that G and q are readily found: 
G from the symmetry and extinctions of the main 
Bragg reflections and q from the axis on which the 
satellites lie. It should be noted that the better known 
(and applied) but weaker requirement-also stem- 
ming from Landau theory (Liftshitz & Pitaevskii, 
1980, pp. 462-463)-that the symmetry group of the 
low-temperature structure be a subgroup of G is not 
sufficient. In particular, it would allow the incorrect 
superspace-group assignments for the three materials 
mentioned above. 

Once the Landau symmetry theorem has been used 
to find the basic group for a given IC material, the 
lower part of the 4D space-group symbol is readily 
determined. In discussing this, it is useful to use the 
alternative way of describing the symmetry of IC 
structures (McConnell & Heine, 1984): 

structure = average structure 

+ Ct cos (q. r) + (?2 sin (q. r), (1) 

where C~ and (?2 are component difference structures 
with periodicity in the unit cell or in the twofold 
superlattice cell if q is measured from ½g. Note that 
(1) can be directly generalized to a more 'squared- 
up' modulation at lower temperature. That this 
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Table 1. The space groups of  the components C~ and 
C2 (to be precise, of the average structure plus C~ or 
C2) for incommensurate materials with given super- 

space-group symmetry 

Superspace group Cl (~" = 0) (?2 ( r  = ~r/2) 

P: lmmm : i l  I lmmm lmm2 
P: l m m m : l s l  12mm 12/m r 
P: Immm : i l s lm2m I2/m~ 
P: lmmm :lss 12/mz I222 

P: Pcmn : 11T Pcmn P2 t am 
P: Pcmn:s l i  P2) mn P21/m 
P: Pcmn : l s l P21cn P2t /  c 
P:Pcmn:ssi  P21/ n P212121 

description and the accompanying symmetry descrip- 
tion are completely equivalent to the superspace- 
group method is shown elsewhere (Simmons & Heine, 
1987). Starting from (1), McConnell & Heine (1984) 
have shown how, for a given G~:q, one can enumerate 
the possible symmetries of the modulated structure 
in terms of pairs of related symmetries for C~ and 
C2. Each such pair corresponds to a different super- 
space group, though all share the basic group G±q 
(see Fig. 1). Alternatively, one may express the sym- 
metries purely in terms of groups by considering the 
structures [average+ C~] and [average+ (?2] which 
occur at phases 0 and rr/2 along the modulation wave. 
It is shown in Simmons & Heine (1987) that the 3D 
space groups G1 and G 2 of those structures are 
uniquely related to the superspace group of the IC 
crystal and the relationships have been tabulated by 
Simmons (1987). Then, once G±q is known for a 
material, one may look in the tables to find the poss- 
ible superspace groups together with the symmetries 
of the difference structures. A little information about 
the symmetry of C1 or (72 will then suffice to fix the 
superspace group from among those alternatives. As 
an example, consider the case oi" IC NaNO2, for 
which G±q is simply G - - I m m m  and q is along a*. 
Table 1 gives the lower portion of the superspace 

i i i 127r 

, j 3 ~ / 2  

I I I 17r 

, , , ~12 

I I I I ~ii I I l I i 

-C2 
i , i J , I m / I  

I I I I ~ - i ~ I  i i 

, i i i i 

Ci  
A a ~ , ~ , , . ' ~ x ( .V . z )  

Fig. 1. Four-dimensional superspace ~-, x, y, z (drawn here as ~',x) 
for describing incommensurate modulated structures. The 
diagonal line of slope Iql contains the actual structure. The 
horizontal lines become hyperplanes of special symmetry in 
superspace. These represent the pure 3D component difference 
structures + C~ and + (?2. Alternatively one may add the average 
structure and label them as [average + Ct], [average + Cz]. From 
a mathematical point of  view it is more convenient to work with 
the difference structures, while adding the average structure gives 
a more easily visualized description of the material. 

group as either 111, l s l ,  l l s  or lss. Since one expects 
the ferroelectric ordering along b of the NO2 ions to 
be one of the component difference structures, one 
writes down the 3D space group of [average+ 
ferroelectric ordering on b] which is lm2m and finds 
in Table 1 that the superspace group must be 
P: Immm :ls 1. 

A few comments on the limits of the applicability 
of the Landau symmetry theorem are in order here. 
Firstly, while most of our discussion will deal 
specifically with IC phases whose modulation wave 
vectors have but two arms in their stars ('one- 
dimensional' modulated structures), we shall briefly 
outline how our results may be extended to cases in 
which the star has more arms. Secondly, in our dis- 
cussion, we are consciously limiting ourselves to IC 
phases resulting from second-order or nearly second- 
order phase transitions to which the concept of a 
Landau order parameter is applicable. We believe the 
theorem is not invalidated by the critical fluctuations 
near Tic which cause the Landau expansion of the 
free energy to be not strictly correct. Similarly we 
believe the theorem is not invalidated by some weak 
higher-order coupling terms in the free energy which 
make the transitions sometimes weakly first order. 
Likewise, it should hold in a case like mullite in which 
we are clearly dealing with an ordering process on a 
disordered average structure but in which that struc- 
ture is never physically realized because the material 
melts below the disordering temperature. 

As stated already, the application of the Landau 
symmetry theorem reduces to a rule of thumb as far 
as the choice of superspace group is concerned. This 
will occupy § 2. In § 3 we will consider the application 
to NaNO2, biphenyl and Rb2ZnBr4(CI4). 

2. The Landau symmetry theorem and the choice of 
'basic space group' 

The symmetry theorem of Landau theory is that in a 
second- (or nearly second-) order phase transition 
the order parameter describing the low-temperature 
phase must have the symmetry of an irreducible rep- 
resentation of the space group G of the high- 
temperature (disordered) structure (Liftshitz & 
Pitaevskii, 1980, p. 460). This theorem is discussed 
by these authors, but while their treatment may be 
regarded as sufficiently complete for someone well 
versed in the use of group theory, it can hardly be 
described as a satisfactory proof for anyone less initi- 
ated. Moreover, these authors apparently do not dis- 
tinguish the theorem from the weaker result that the 
low-temperature phase has a subgroup symmetry: 
they state both, without discussion, whereas we have 
seen that there is a significant difference between 
them. We therefore start with a few remarks about 
the theorem before discussing its implications for 
superspace-group determination. 
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In Landau theory, the free energy F (the Gibbs 
free energy, but we reserve the symbol G for groups) 
is expanded in powers of all the coordinates of the 
system gi. Above the transition temperature their 
mean value is zero, but they describe all possible 
fluctuations. The stability of the system depends on 
the quadratic terms in the expansion 

F =  Y. aoXiXj + . . . .  (2) 
U 

We wish to diagonalize this quadratic form in terms 
of normal modes 

q ' .  = E , l , ..,x, (3) 
i 

so that the second-order terms F2 become 

F = = Y . A ,  q t * ~ , ,  (4) 
D'! 

where the use of the complex conjugate g t .  includes 
cases where the g t  are complex. The ~ ,  are the 
normal modes, including all phonons and also non- 
oscillatory 'ordering modes'; we shall always use the 
phrase 'normal modes' in this wider sense. The A, 
are in general temperature dependent: they are all 
greater than zero for T above the transition tem- 
perature and the phase transition occurs when one 
of them hits zero- that  is, when one normal mode 
goes soft. The A,, and qJ.,~ are determined as eigen- 
values and eigenvectors of the matrix equation 

Y. aoq& J = A.~O.., (n fixed) (5) 
q 

which may be written symbolically as 

agt ,  = A.qt ,  (nfixed). (6) 

In (2) and (6) the matrix a incorporates the full 
symmetry group G (here a 3D space group) of the 
system in the disordered phase above the transition 
temperature. 

The proof that each of FE'S normal modes q t  
belongs to an irreducible representation of G now 
follows in the usual way as for the classical normal 
modes of oscillation of a system or quantum- 
mechanical eigenstates of a system (Heine, 1960, 
p. 235). We sketch the proof briefly since it will be 
useful in some of the further discussion in this paper. 
We consider any symmetry element S of the group 
G and operate with it on (6): since a, like F, is 
invariant under S (in fact, under all of G), this 
generates a new normal mode Sgt. with the same 
eigenvalue A..  In this way we generate with G a 
vector space of modes [qt.1, ~,2,  . . . ,  ~ , , ]  all having 
identical eigenvalue A,  and transforming into one 
another under G; the transformation matrices form 
a representation of G. If G contains all the symmetries 
of the system (and we assume the effects of time 
reversal to have been taken into account), then this 
representation is irreducible apart from accidental 

degeneracies in the sense of Heine (1960, pp. 44, 278). 
To see that the set [qt,1, q t , 2 , . . . ,  qt, s] of normal 
modes belonging to one A, spans one irreducible 
vector space, let us start by assuming the opposite: 
i.e. that the vector space breaks up into two (or more) 
irreducible vector spaces [~ ,1 ,  1 / ¢ n 2 , ' ' ' ,  lI'¢nr] and 
[ ~ , r + l , . . . ,  q t ] .  Then on the one hand they have 
mathematically identical eigenvalues A, ,  which 
implies some mathematical connection between them, 
and on the other hand no symmetry element of G 
connects one space with the other. This is a contradic- 
tion, since G was taken as the complete symmetry 
group of the system, apart from accidental degeneracy 
in the sense already referred to. Then the theorem is 
Proven as stated. 

Having proved a precise result about the symmetry 
requirements for all second-order phase transitions, 
we shall now specialize in incommensurates with a 
one-dimensional modulation (i.e. a single q along a 
crystal axis). In talking about a single real crystal 
with a 1 D modulation we are forced to differentiate 
between the modulation vector and other vectors 
(aside from the negative of that vector) which in the 
unmodulated crystal would be equivalent to it by 
symmetry. For example, in a cubic crystal with modu- 
lation along z, the axes [100] and [001] are no longer 
equivalent; in choosing to look at one crystal, we 
have chosen to look at one particular modulation 
vector. This means that in order to discuss an IC 
crystal we must drop all elements of G which do not 
belong to G±q from the discussion; the order pa- 
rameters are then constrained to transform as irre- 
ducible representations of G±q. McConnell & Heine 
(1984) have discussed this point with respect to the 
order parameters, g,q and ~Oq, of the difference struc- 
tures C1 and (?2 of (1). They have shown that the 
order parameters, and hence the difference structures 
themselves, transform according to irreducible rep- 
resentations of G+q such that under elements sending 
q to itself both representations are either even or odd 
while under the other elements of G+q one representa- 
tion is even and the other odd. 

The proof of our rule of thumb is now straightfor- 
ward. We have seen that the language of irreducible 
representations is fundamentally the correct one for 
specifying the symmetries of the ordering patterns 
produced by second-order incommensurate phase 
transitions. However, as mentioned in § 1, the 
language of the superspace groups of de Wolff et al. 
(1981) is a natural one in which to discuss diffraction 
data, so we shall now 'translate' our result. In essence, 
this means proving our rule of thumb: that the 3D 
space group G:~q is the correct choice of 'basic space 
group' for the superspace-group symbol. The irreduc- 
ible representation associated with an order param- 
eter specifies whether the order parameter is even or 
odd under any symmetry element of G±q. Now con- 
sider any generator gl of G~q. Either it leaves q 
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invariant or it turns q into -q .  In the latter case it 
must have character +1 for C1 (or C2) and -1  for (?2 
(or C1) as in McConnell & Heine (1984). Thus g~ 
combined with z ~ - r  is a symmetry in superspace 
since the latter leaves the hyperplane z = 0 containing 
C~ (C2) invariant and changes the hyperplane r = rr/2 
containing C2 (C~) to the hyperplane r = - r r / 2  con- 
taining -(?2 (-C~).  Now consider another generator 
g2 which leaves q invariant. By the McConnell & 
Heine analysis, both C~ and (?2 have the same charac- 
ter +1 or -1 ,  which in superspace become r ~  r or 
~" ~ ~" + rr respectively. Thus every generator g of G~_q 
finds a place in the superspace group and the smallest 
group which can be the basic group must be G±q. 
Moreover the superspace-group element constructed 
from g incorporates whether C~ and C2 are even or 
odd under g. This proves our rule of thumb. 

It is noted that the reduction of the largest candi- 
date for the basic group from G to G±q also emerges 
from a discussion in the language of superspace 
groups by de Wolff et al. [(1981); see their equation 
(3.6)]. 

Having discussed the case of a one-dimensional 
modulation in detail, we shall now outline how the 
ideas may be applied to modulations whose wave 
vectors have more components. Within this group of 
IC phases, there are several distinct possibilities to 
be considered. Starting with the example of a phase 
whose wave vector points along an arbitrary direction 
in the a ' h*  plane, we see that the modulation may 
act either as cos [q.  (a + b)] or as cos (q. x) cos (q.  y). 
The first corresponds to a one-dimensional modula- 
tion in an arbitrary direction (making a 'striped' pat- 
tern in the ab plane) and the second to a truly two- 
dimensional modulation with independent vectors qx 
and qy and with McConnell-Heine difference struc- 
tures Clx, C2x, CIy and C2y (making a 'quilted' pat- 
tern). Similar distinctions may be drawn among the 
several kinds of IC phases possible when the wave 
vector has components along all three crystal axes. 

Those phases which make 'striped' patterns are not 
fundamentally different from the simple one- 
dimensional phases we have already discussed; for 
them our rule of thumb holds as stated. For the others, 
we need to extend the rule a bit, and to do so we 
must look carefully at what we mean by the 'star' of 
a wave vector in this context. The size of the star of 
the modulation vector is actually dependent on the 
current phase of the material. In the disordered phase, 
the star is, of course, determined by the symmetry 
group G of the material. But in an IC phase of a 
given crystal, directions which are symmetry 
equivalent in the disordered phase are distinguishable 
by virtue of the presence of the modulation. What 
remain equivalent are the independent components 
and their opposites: for example, qx+qy and - (qx + 
qy) in the striped phase, qx and -qx ,  qy and -qy  in 
the quilted phase. So the relevant star in an IC phase 

consists of all vectors reached from the modulation 
vector by reversing the sign of one or more com- 
ponents. Then, following the arguments used in the 
discussion of the one-dimensional case, the basic 
space group of a higher-dimensional IC phase is that 
subgroup of the high-temperature symmetry group G 
which sends the wave vector of each independent 
modulation component of the phase either to itself 
or to minus itself. If the independent components are 
numbered as q~, q 2 , . . . ,  qn then one may designate 
this group a s  G±qt±q2.. " ±qn" 

3. Applications of the Landau symmetry theorem 

In order to demonstrate the power of the rule of 
thumb arising from the Landau symmetry theorem, 
we shall show here how it specifies the superspace 
groups of three materials: NAN02, biphenyl and 
Rb2ZnBr4(C14). These examples have been chosen 
because, as mentioned earlier, other authors have 
previously made what we believe to be some incorrect 
suggestions for the superspace group in analysing the 
symmetry of these compounds. We discuss the deter- 
mination of the correct superspace group, taking into 
account both the requirements of the Landau sym- 
metry theorem and the evidence cited by the authors 
in support of their suggestions. For simplicity we shall 
write superspace group symbols all on one line with 
colons separating the parts written by de Wolff et al. 

lmmm is (1981) as superscripts and subscripts, e.g. P i • 
written here as P : l m m r n : l s l .  

The determination of the superspace group of 
NaNO2 as P : I r n m m : l s l  has already been sketched 
in § 1; this agrees with the analysis of Janner & 
Janssen (1980). Paciorek & Kucharczyk (1984) and 
Kucharczyk & Paciorek (1985) imply in their dis- 
cussions that I m m m  and I 2 m m  are equally accep- 
table choices of space groups; in fact, since mmrn is 
its own G~.q and 2mm is a subgroup, 2ram cannot 
possibly be the basic space group. Thus, according 
to the Landau symmetry theorem, Paciorek & 
Kucharczyk's assigned superspace group P:2mm :ss 1 
could only be assigned to NaNO2 if an additional 
phase transformation were assumed to have occurred; 
no evidence is adduced for such a transition at the 
temperature concerned. 

Paciorek & Kucharczyk base their choice of super- 
space group on X-ray structure analyses of NaNO2 
in terms of the two superspace groups P : I m m m : l s l  
and P : 1 2 m m : s s l .  In their 1984 work, they find for 
P : I 2 m m : s s l  a minimum R factor of R = 0.0822 for 
the satellite reflections with a phase shift of 22 ° 
between the occupational and displacive modulation 
waves; for P : I m m m : l s l ,  i.e. without a phase 
difference, they find R = 0.0908. In their 1985 paper 
(Kucharczyk & Paciorek, 1985) they reanalyse the 
data and find 'practically no phase shifts' between 
the occupational and displacive modulation (the 
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actual figures are 9 ° for Na + and 2 ° for NO~-) but 
larger phase shifts between the modulation waves of 
Na ÷ and NO~- (12.5 ° for occupational and 22 ° for 
displacive). The difference in the R factors is the 
same as before (0.08 compared with 0.09). 

We suggest that the differences in the R factors are 
not significant and that the non-zero values of the 
phase shifts arise from small errors in the data. That 
the phase shifts must, by symmetry, be zero is 
explained quite extensively in Heine, Lynden-Bell, 
McConnell & McDonald (1984); however, we shall 
add a few remarks on this point here. Suppose for 
the moment that the NO~- ordering modulation and 
the displacement modulations are out of phase by 
22 ° , as illustrated in Fig. 2. Then if we operate with 
the mirror mx as indicated in Fig. 2, the ordering 
wave clearly is left invariant, while the displacive one 
is not. A real IC difference structure is a linear combi- 
nation ~ =/3Oq+/3*O_q; and if we choose /3 such 
that rnx~ = ~ for a particular mirror plane mx (shown 
in Fig. 2) of the disordered space group, then the 
whole of gt must be invariant under mx and not just 
part of ~. So we have a contradiction, and our initial 
assumption that the difference components could be 
22 ° out of phase must be wrong. It should be men- 
tioned that B6hm (1984, private communication) has 
reanalysed his diffraction data (B6hm, 1978) includ- 
ing a displacive modulation, and finds a sharp 
minimum at the R factor for zero phase difference 
from the occupational modulation, as we would 
expect. 

The case of phase III ofbiphenyl is equally straight- 
forward. Here the high-temperature average structure 
has space group P21/a and since q is parallel to b* 
both 21 and the glide plane belong to G±q. Accord- 
ingly, the superspace group is (only a two- 
dimensional irreducible representation exists at ½b*) 
P:P21/a:l l .  Baudour & Sanquer (1983) have 

order 
parameter 

I 
I 

mirror 
m. 

Fig. 2. Modulation of the NO2 ordering amplitude (broken line) 
and of the atomic displacements (full line) in NaNO2 with a 
supposed phase difference between them. While the ordering 
modulation is invariant under the mirror plane mx, the displace- 
ment wave is not. Thus the structure shown cannot form an 
irreducible representation of the space group G of the disordered 
phase. 

maintained that P:Pa:I is the superspace group, but 
this would clearly violate the Landau symmetry 
theorem since Pa is merely a subgroup of G±q. The 
arguments of Baudour & Sanquer supporting P: Pa :1 
on the basis of diffraction and spectroscopy experi- 
ments have been answered in Heine & Price (1985) 
so there is no need to repeat them here. This argument 
assumes that phase III results simply from a lock on 
of phase II onto qa = qc = 0, without any additional 
symmetry breaking for which no real evidence or 
argument has been produced. 

RbEZnBr4(C14) is also quickly handled by the 
Landau symmetry theorem. The space group of the 
disordered phase is Pcmn and since q is parallel to 
c* this is also G±q. From Table 1, we see that there 
are four possibilities for the lower portion of the 
space-group symbol: liT, l s l ,  s l l  and ssl. K2SeO4, 
which is isomorphic to Rb2ZnBra(CI4), is known 
(Iizumi, Axe, Shirane & Shimaoka, 1977) to make 
the incommensurate phase transition via a soft mode 
of symmetry Z2; unfortunately, the available neutron 
scattering data (de Pater & van Dijk, 1978) on 
Rb2ZnBr4 merely show that the analogous mode is 
overdamped so no firm conclusions about the transi- 
tion mechanism have been drawn. However, if we 
assume that Rb2ZnBr4(C14) behaves similarly to 
K2SeO4, we see from Table 1 that P:Pcmn:ssl is the 
correct superspace symbol. No matter which mode 
actually causes the transition, the g_roup put forward 
by Janner et al. (1980), P:Pc21n:sll,  is clearly incom- 
patible with our rule of thumb for the symmetry 
requirements. The experimental evidence cited by 
Janner et al. in support of their superspace assignment 
is at best inconclusive. While they state that 'a better 
interpretation' of their data (the orientation of satel- 
lite faces on single crystals of the IC phase) can be 
obtained by assuming the superspace group of 
Rb2ZnCla to be P:Pc21n:sll,  they also say that the 
data for the isomorphic Rb2ZnBr4 are 'compatible 
with both superspace groups'. Since they acknowl- 
edge that the satellite faces on the Rb2ZnBr4 were 
'much larger in size' than those on Rb2ZnCI4 because 
the experimental temperature was well below Tic of 
the former and near Tic of the latter, the variations 
on which their superspace-group assignment of 
Rb2ZnCI4 are based may not be significant (they are 
not quoted in the paper). The only way for their 
superspace group to be correct for Rb2ZnC14 is for 
another phase transition to precede arrival at the 
observed IC phase. Similarly, the suggestion by Dam, 
Janner, Bennema, van den Linden & Rasing (1983) 
that the superspace group of IC Rb2ZnBr4 may have 
3D point-group symmetry 222 (implying a basic group 
of lower symmetry than G±q) would violate the 
Landau symmetry theorem unless an extra inter- 
mediate phase transition were postulated, a tran- 
sition for which there is no experimental evidence 
quoted. 
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Abstract 

A geometrical 'WPV' notation for crystallographic 
point symmetry groups (PSG) in four-dimensional 
space is proposed. This simple notation generalizes 
the Hermann-Mauguin notation and makes it poss- 
ible to retrieve the PSG elements easily. Tables 
classifying all elements of each PSG for systems 1 to 
28 are presented. For higher systems, from 29 up to 
33 inclusive, the results of the work are not reported 
owing to the space required, but they are at the 
disposal of the reader upon request. 

Introduction 

The present article is the continuation of two previous 
papers; we first defined the crystallographic point 
symmetry operations (PSOs) as elements of crystallo- 
graphic point symmetry groups (PSGs) in IE 4, I1:5 and 
IF 6 (Weigel, Veysseyre, Phan, Effantin & Billiet, 1984), 
then we gave an extensive description of the 384 
elements of the crystallographic PSG for the 
holohedry of the primitive hypercubic crystal system 
in IE 4 (Veysseyre, Weigel, Phan & Ettantin, 1984). For 
some PSGs in IF 4 we proposed geometric symbols 
which were generalizations of Hermann-Mauguin 

symbols but we did not give a listing of all PSOs of 
these PSGs (Weigel, Phan & Veysseyre, 1984; 
Veysseyre, Phan & Weigel, 1985). 

By means of a completely different approach, Whit- 
taker (1984) recently published a list of rather compli- 
cated symbols for the 227 groups but did not propose 
any list of PSOs. Furthermore his symbolism is far 
from the Hermann-Mauguin  notation except for 
some polar groups. 

In this paper we propose simple geometric symbols 
for each of the 227 crystallographic PSGs of 11:4; then 
we give the entire listing of all PSOs, elements of 
each of 161 crystallographic PSGs among the total 
of 227. It should be pointed out that for each PSG 
of ~:4 our geometric symbol is a generalization of a 
Hermann-Mauguin  symbol for physical space ~3 and 
makes it possible to retrieve any symbol of any PSO, 
an element of the PSG. 

We recall that Wondratschek, Billow & Neubiiser 
(1971) determined the number of crystallographic 
PSGs of II :4. There are 227 belonging to 33 crystallo- 
graphic systems which in turn are grouped into 23 
families, indicated by a Roman numeral. The 227 
PSGs of [E 4 a r e  all subgroups of at least one of the 
four following PSGs: 20-22; 30-13; 31-07 and 33-16: 
here the first number characterizes the system (cf. 
Table 1, fourth column), the second number the PSG 
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